Applied Physics Lab

Course Code	19BS1252	Year	I	Semester	II
Course Category	Basic Sciences	Branch	CE	CE Course Type	
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to					
CO1	CO1 Determine the rigidity modulus, Poisson's ratio of a material and coefficient of					
	damping, quality factor for an oscillator.					
CO2	Demonstrate elastic limit and stress-strain relationship using Hooke's law					
CO3	Calculate thermal conductivity of bad and good conductors.					
CO4	Apply resonance to estimate the frequency of a tuning fork and examine the relation					
	between frequency and volume of a cavity.					
CO5	Identify the type of semiconductor and evaluate the acceptance angle, numerical					
	aperture an optical fiber.					

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength of correlations (H:High, M: Medium, L:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н		Н										Н	
CO2	Н		Н										Н	
CO3	Н		Н										Н	
CO4	Н		Н										Н	
CO5	Н		Н										Н	

	Syllabus				
Unit Contents					
No.		CO			
I	To Determine The Rigidity Modulus Of Material Of A Wire-Dynamic				
	Method (Torsional Pendulum).				
II	To Determine The Poisson's Ratio Of Rubber Experiment				
III	To Investigate Hooke's Law	CO2			
IV	To Determine The Thermal Conductivity Of A Bad Conductor By Lee's	CO3			
	Disc Method	COS			
V	To Study Of Resonance In A LCR Circuit.				
VI	To Verify The Relation Between Volume Of The Air In The Resonator				
	And Frequency Of Note.				
VII	To Determine The Resonance Frequency Using Sonameter	CO4			
VIII	To Determine The Frequency Of Electrically Maintained Tuning Fork By				
	Melde's Method.				
IX	To Determine The Hall Coefficient Using Hall Effect Experiment.				
X	To Determine The Numerical Aperture Of A Given Optical Fibre And	CO5			
	Hence To Find Its Acceptance Angle.				

Learning Resources

Text Books

RamaraoSri,ChoudaryNityanand and Prasad Daruka, "Lab Manual of Engineering Physics"., Vth ed., Excell Books, 2010

Reference Books

PrithwirajPurkait, BudhadityaBiswas and ChiranjibKoley, Chapter 11 Sensors and Transducers, Electrical and Electronics Measurements and Instrumentation, 1/e., 2013 McGraw Hill Education (India) Private Limited, 2013.

e- Resources & other digital material

http://www.physicsclassroom.com/The-Laboratory